
pgcv - Computer Vision Objects for PostgreSQL
pgcv is a PostgreSQL extension for Computer Vision from the database server. The extension implements algorithms for
image segmentation, in particular: digital mammogram segmentation.

The extension implements both data types and functions. The data types are PostgreSQL composite types and the
functions were created using PL/Python, meaning the function's body is written in Python.

pgcv - Computer Vision Objects for PostgreSQL
Requirements
Structure

Data Types
Function Modules

pgcv_io
image_read
image_write

pgcv_filter
blur_median
threshold_otsu
enhancement_otsu
binarize

pgcv_histogram
hist_bin_edges
hist_bin_centers

pgcv_measure
region_props_json
region_props

pgcv_bundle
mam_region_props

Example
Image Segmentation
Object Extraction

Requirements
This extension requires the following:

PostgreSQL (version 10 recommended)
Python3
The following Python packages

Numpy
Scipy
scikit-image
Pillow
Pandas

plpython3u installed in the PostgreSQL database

The mentioned Python packages can be installed by executing the following command on your terminal:

pip3 install numpy scipy scikit-image pandas Pillow

Structure
The extension was structured into SQL-schemas because it allows the possibility to modularize the functions and group
them into logical packages.

There are 7 schemas in the extension. pgcv_core defines the datatypes and the rest of the schemas define the functions
that operate over theese datatypes.

The following diagram shows the dependency structure of these schemas:

Data Types

There are two datatypes in the pgcv_core: ndarray_int4 and pegionprops, as shown in the figure bellow:

1. pgcv_core.ndarray_int4: N-dimensional array of int4 elements. Used to represent and store images. The shape
is a tuple of N integers (one for each dimension) that provides information on how far the index can vary along that
dimension. The data is a buffer which contains a flattened representation of the multidimensional array's data

2. pgcv_core.regionprops: Region properties of an object found in a binary image. The properties contained in this
type are label, area, perimeter, centroid, silidity, eccentricity, convex_area, circularity, orientation and bbox (bounding
box)

Function Modules

pgcv_io

This schema contains the image input and output functions to the filesystem. Meaning that this functions read and write
images into files.

image_read

Reads an image from a file into an ndarray_int4.

-- having a filename of a grayscale image in disk
SELECT shape FROM pgcv_io.image_read('<filename>');

image_write

Writes an image from an ndarray_int4 into the specified filename (path).

-- having an image in the database and the output filename
SELECT pgcv_io.image_write(<image>, '<filename>');

pgcv_filter

This schema contains the image filtering functions. One example of this functions is the median_blur which replaces each
pixel by the median of a local window array given by a kernel size.

blur_median

Perform a median filter on an N-dimensional array.

-- having an image in the database and
-- an odd kernel size (kernel size defaults to 5 if not specified)
SELECT pgcv_filter.median_blur(<image>, [<kernel size>]);

threshold_otsu

Calculates a threshold value based on Otsu's method.

-- having an image in the database
SELECT pgcv_filter.threshold_otsu(<image>);

enhancement_otsu

Enhances an image using the Otsu's threshold. Used for mammogram analysis.

This function uses a method designed by Johnny Villalobos that has proven to be quite effective for mammogram
segmentation. It is described follows:

Let t be the threshold of an image calculated through the Otsu's method, max the maximum grayscale value of the image
and f the enhancement factor so that

the value of each enhanced pixel p' corresponds to

-- having an image in the database
SELECT pgcv_filter.enhancement_otsu(<image>);

binarize

Binarizes an image according to the supplied threshold.

-- having an image in the database and a threshold value
SELECT pgcv_filter.binarize(<image>, <threshold>);

pgcv_histogram

This schema contains the histogram computing functions. There are two main kinds of histograms in pgcv, both return an
histogram and a set of bin features (either the center of the bins or the edges)

hist_bin_edges

Compute the histogram of a set of data and the bin edges

-- having an image in the database,
-- the number of bins (bins defaults to 10 if not specified)
-- and whether the histogram has to be normalized or not
SELECT * FROM pgcv_histogram.hist_bin_edges(<image>, [<bins>, [<as_float>]]);

hist_bin_centers

Compute the normalized histogram of a set of data and the bin centers

-- having an image in the database
-- and the number of bins (bins defaults to 10 if not specified)
SELECT * FROM pgcv_histogram.hist_bin_centers(<image>, [<bins>]);

pgcv_measure

This schema contains the functions that perform measure computations on the image. In particular, pgcv_measure
includes de region properties functions, which find objects on a binarize image

region_props_json

Returns a json array with the region properties of a binary image

-- having a binarized image in the database
SELECT pgcv_measure.region_props_json(<image>);

region_props

Returns a set of region properties found in a binary image

-- having a binarized image in the database
-- this allows for the inclusion of WHERE conditions
-- for filter the properties
SELECT * FROM pgcv_measure.region_props(<image>);

pgcv_bundle

The bundle schema provides access to common successive operations performed to an image. The purpose of this schema
is to reduce the overhead produced by the comunication from the PostgreSQL server and Python.

mam_region_props

Returns a set of region properties found in a mammogram image

-- having an image in the database
-- and odd kernel size (kernel size defaults to 5 if not specified)
SELECT * FROM pgcv_bundle.mam_region_props(<image>, [<kernel size>]);

Example
The following example shows the sequence of SQL commands needed to perform a mammogram segmentation using the
pgcv. The image used for this example is an mammogram taken from the MIAS MiniMammographic Database:

This example is divided into two steps: the image segmentation using the Otsu enhancement and the object extraction using
the region properties

Image Segmentation

The following steps show the needed steps to perform the segmentation

Read the image from the file system
Perform a median_blur
Compute the Otsu threshold of the image
Enhance the image
Binarize the image using the threshold

DO $_$
DECLARE
 image pgcv_core.ndarray_int4;
 result pgcv_core.ndarray_int4;
 thresh float;
BEGIN
 image := (SELECT pgcv_filter.blur_median(
 pgcv_io.image_read('/path/to/original/image.png'), 5
));
 thresh := (SELECT pgcv_filter.threshold_otsu(image));
 result := (SELECT pgcv_filter.binarize(pgcv_filter.enhancement_otsu(image),
thresh));
 PERFORM pgcv_io.image_write(result, '/path/to/binarized/image.png');
END
$_$

The result of this process is the following image:

Object Extraction

The object extraction consists of a single SQL query that computes the region properties and allows to filter them through a
WHERE clause

SELECT
 label, area, perimeter, centroid, circularity
FROM pgcv_measure.region_props(pgcv_io.image_read('/Users/ro/Desktop/prueba.png'))
WHERE area > 15 AND area < 55;
-- you could also include solidity, eccentricity, convex_area, orientation and bbox
in the query

The result of this query is the following table of region properties

label area perimeter centroid circularity

4 20 15.071067811865474 {299.75000000000000000,832.80000000000000000} 1.1065010026804611

5 19 14.242640687119286 {420.26315789473680000,427.31578947368420000} 1.1770161688565013

10 36 20.727922061357855 {473.47222222222223000,481.33333333333330000} 1.0529332270693823

13 16 13.242640687119284 {490.68750000000000000,461.25000000000000000} 1.1465174146811834

19 17 13.071067811865474 {544.00000000000000000,580.88235294117650000} 1.250364543402942

24 48 26.485281374238568 {577.29166666666660000,400.58333333333330000} 0.8598880610108875

25 27 17.65685424949238 {578.70370370370370000,379.37037037037040000} 1.0882958272169045

29 30 22.727922061357855 {637.46666666666670000,391.53333333333336000} 0.7298131021442217

35 30 20.14213562373095 {661.76666666666670000,467.10000000000000000} 0.929223291202501

36 34 26.106601717798213 {670.52941176470590000,451.55882352941177000} 0.6268853111775277

label area perimeter centroid circularity

39 24 19.692388155425117 {676.58333333333340000,464.00000000000000000} 0.7777219038741342

41 26 19.44974746830583 {687.46153846153850000,449.30769230769230000} 0.8636848033284439

44 17 13.071067811865476 {687.00000000000000000,492.52941176470586000} 1.2503645434029418

46 17 13.071067811865476 {722.23529411764710000,590.00000000000000000} 1.2503645434029418

55 23 15.65685424949238 {734.34782608695650000,462.91304347826090000} 1.1790403893488048

62 20 15.071067811865474 {750.40000000000000000,426.75000000000000000} 1.1065010026804611

64 32 20.520815280171306 {758.00000000000000000,461.71875000000000000} 0.9549279835285656

65 50 32.935028842544405 {768.68000000000000000,506.98000000000000000} 0.5792469719204167

67 25 17.071067811865476 {768.28000000000000000,537.20000000000000000} 1.0780241689052945

69 18 13.071067811865476 {773.83333333333340000,366.72222222222223000} 1.3239153988972323

70 51 25.556349186104047 {785.56862745098040000,284.41176470588240000} 0.98125619872571

98 26 18.485281374238568 {868.50000000000000000,457.76923076923080000} 0.9561611214257792

99 23 16.485281374238568 {872.34782608695650000,422.21739130434780000} 1.0635183109500363

108 30 25.727922061357855 {942.16666666666660000,428.43333333333334000} 0.5695366755033309

112 35 23.556349186104047 {975.22857142857140000,635.28571428571430000} 0.7926143695103078

